zum Directory-modus

Tutorial MenueMolecular ModelingLerneinheit 14 von 18

Ab-initio-Methoden - Einführung und Näherungen

LCAO-Ansatz

Wie auch schon an den Beispielen Wasserstoffmolekül und Butadien gezeigt, werden die Molekülorbitale als Linearkombinationen von Atomorbitalen dargestellt.

Genauso verfährt man auch mit jedem einzelnen Molekülorbital, das in der Slater-Determinante steht.

Abb.
Gleichung (7)

Um die Übersicht bei den Indices zu behalten, werden von jetzt ab für Atomorbitale griechische und für Molekülorbitale lateinische Buchstaben verwendet. Ψi ist ein Molekülorbital, Φµ ein Atomorbital. Die Atomorbitale sind normiert, man nennt sie Basisfunktionen. Die cµi sind die Ausdehnungskoeffizienten der Molekülorbitale. Im Gegensatz zum Beispiel Wasserstoff und zur Hückel-Näherung entspricht N nicht automatisch der Anzahl der Molekülorbitale. Die Anzahl der Basisfunktionen, aus denen die Moleküorbitale gebildet werden, muss mindestens so groß wie die Zahl der Molekülorbitale (n/2) sein. In Abhängigkeit vom gewählten Basissatz kann N aber auch größer sein. Das Prinzip der Basissätze wird im nächsten Kapitel an einigen Beispielen vorgestellt.

Seite 7 von 9