zum Directory-modus

Heisenberg'sche UnschärferelationZoomA-Z

Fachgebiet - Quantenphysik

Die Heisenberg'sche Unschärferelation (nach Werner Heisenberg, 1927) ist eine Aussage der Quantentheorie und besagt (in seiner ursprünglichen Form), dass sich Ort und Impuls eines Teilchens nicht gleichzeitig mit beliebiger Genauigkeit bestimmen lassen.

Zwischen der Unschärfe der Ortsbestimmung Δx und der Unschärfe der Impulsbestimmung Δpx in der gleichen Raumrichtung besteht der Zusammenhang

ΔxΔpx2=h

mit dem Planck'schen Wirkungsquantum h.

Die Unschärfe der Messung ist dabei nicht auf einen Messfehler zurückzuführen, sondern prinzipieller Art und im Welle-Teilchen-Dualismus der Materie begründet.

Unschärferelationen gelten auch für weitere Paare von Observablen wie z.B. für Energie und Zeit, oder Drehimpuls und -winkel.

Verallgemeinert kann die Unschärferelation zweier Observablen A und B, mit den ihnen zugeordneten Operatoren A^ und B^ , als

ΔAΔB12|[A^,B^]|

formuliert werden. [A^,B^] bezeichnet den Erwartungswert des Kommutators von A^ und B^.

Lerneinheiten, in denen der Begriff behandelt wird

De Broglie und HeisenbergLevel 245 min.

PhysikQuantenphysikAtombau

Einführung in Materiewellen, Davison-Germer-Experiment und die Unschärfebeziehung.

De Broglie und HeisenbergLevel 145 min.

ChemieAllgemeine ChemieAtombau

Einführung in Materiewellen, Davison-Germer-Experiment und die Unschärfebeziehung.

Quantenmechanik: Heisenberg'sche UnschärferelationLevel 245 min.

ChemieTheoretische ChemieQuantenmechanik

Die Begriffe Erwartungswert, Unschärfe und Kommutator in der Quantenmechanik werden definiert. Die Heisenberg'sche Unschärferelation wird hergeleitet und ihre Bedeutung erläutert.